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Abstract-We consider four effects relevant to the determination 
of the ratio of radar signal to clutter and noise.  These effects 
are atmospheric turbulence, target fluctuations based on the 
Swerling models, zero-mean Gaussian background and receiver 
noise, and Weibull-distributed clutter.  Radar return signal 
levels are affected by target fluctuations and atmospheric 
turbulence, characterized by target fluctuations according to 
the Swerling models and a lognormal distribution, respectively.  
Since these distributions are not independent and identically 
distributed (IID), they cannot be simply added, and must be 
treated by combining them in a manner similar to convolution.  
Also, clutter and noise are not IID, and must be combined in a 
similar way.  The ratio of these two combinations comprises a 
probabilistic model of the ratio of radar signal to clutter and 
noise.  This ratio is the probability that a given signal level will 
be achieved in the presence of atmospheric and target 
scintillations divided by the probability that a given clutter and 
noise level will be observed.  To determine the ratio of the 
actual signal to clutter and noise, we must multiply these 
probabilities by the mean powers resulting from these 
phenomena, as will be shown later.  We treat several cases of 
interest by varying the average radar cross section, the log 
intensity standard deviation of turbulence, the radar threshold-
to-noise and signal-to-noise ratios, and the distribution of 
Weibull clutter mentioned above. 

I.  INTRODUCTION 

Atmospheric turbulence manifests itself in many 
ways in electromagnetic propagation.  The most common 
effect is that of intensity fluctuations commonly observed in 
many readily observable situations, such as the twinkling of 
stars [1].  It is this manifestation that is considered in this 
paper.  Other effects are phase fluctuations that result in 
scintillation of the angle of arrival of a beam.  Still others 
result in thermal blooming and related phenomena.   

In a similar way, radar targets have been shown to 
fluctuate significantly as a function of angle.  Very small 
changes in angle can give rise to changes in radar cross 
section of an order of magnitude or more.  The seminal work 
of Swerling [2] in the study of radar cross sections has 
resulted in the elegant and simple models of cross section 

fluctuations commonly used today.  The numerator of the 
expression for the ratio of the radar signal to clutter and 
noise (SCNR) comprises the combination of turbulent and 
target fluctuations. 

Noise in a radar receiver comes from background 
thermal radiation as well as noise generated in the receiver 
itself.  This noise has almost always been treated as a zero-
mean Gaussian process.  Radar clutter comes from undesired 
scatter from objects within the radar beam that are not 
targets, and has been characterized by several distributions, 
including lognormal, Weibull, Rayleigh, and normal as well 
as a few others.  The parameters of these distributions are 
chosen based on the type of clutter in the beam, for example 
urban, wooded, sea, and cropland scenarios, as well as the 
radar signal grazing angle.  The denominator of the 
expression for the ratio of radar signal to clutter plus noise 
combines the contributions of noise and clutter. 

The procedure for determining the SCNR follows 
closely that used by McMillan and Barnes [3], who 
considered the detection of optical pulses in the presence of 
Gaussian noise and atmospheric scintillation.  McMillan [4] 
used a similar approach to calculate the probability of 
achieving a given minimum power density on a target in a 
laser weapon scenario, and McMillan and Kohlberg [5], in 
unpublished work, considered the probability of achieving a 
minimum power on a radar receiver for fluctuating targets in 
atmospheric scintillation.  Related work was done by Farina, 
Russo, and Studer [6], who studied radar detection in 
lognormal clutter, and by Morgan, Moyer, and Wilson [7], 
who developed a method for determining the optimal radar 
threshold in Weibull clutter and Gaussian noise.  More 
recently, McMillan and Kohlberg [8] used a very similar 
approach to determine the SCNR for lognormal clutter. 

II. THEORY: DETERMINATION OF THE SIGNAL LEVEL 

We consider the theory used to develop the 
probabilistic SCNR in two parts: Part 1 develops the signal 
(numerator) part of this ratio, and Part 2 derives the clutter 
and noise portion (denominator).  For the case treated in this 
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paper, the size of the electromagnetic beam is assumed to be 
much larger than the size of the aperture of the radar, a 
restriction that is generally met for radar wavelengths.   We 
also assume that the time duration of the transmitted signal 
or coherent processing interval is short compared to the time 
required for the atmospheric turbulence, noise, target, and 
clutter statistics to change and that these statistics do not 
change appreciably over the small angles over which the 
target fluctuations change.  These conditions are generally 
met for microwave or millimeter-wave radars.  Target and 
atmospheric scintillations must also be uncorrelated.  The 
numerator is the probability P(R) of receiving a given power 
WR required to achieve a predetermined signal to noise ratio 
for a Swerling I target and is [4,5,9] 12  

· 2 ,                          1  

where σW is the log intensity standard deviation of 
turbulence, σAV is the average radar cross section of the 
target, σR is the radar cross section required to give P(R), and 
lnW* is the mean of lnW [10].  In this equation, the first 
integral characterizes Swerling I target fluctuations and the 
second relates to the log normally distributed atmospheric 
scintillations. The Swerling III target will be treated later.  
The required power WR is related to the required radar cross 
section by the equation WR = CσR, where C is a constant that 
accounts for all of the parameters of the radar range 
equation.  This expression says simply that the return power 
is proportional to the radar cross section.  Similarly, W = 
Cσ, and dσ = (1/C)dW.  Making these substitutions and 
performing the first integration gives simply  
exp(-WR/CσAV).  In the second integral, let                             √ ,                               (2) 

then lnW=√2 , and √2 .  At W 
= WR,   /√2 , and at ∞,
∞.  Making these substitutions gives 

 

 

· √ /√ .                      (3) 
                                                        

The parameter W* is given by  /2   
where  is the average value of W [10].  Now let 

, where K is the fraction of the power WR required for 
some level of nominal performance.  For example, if WR is 
the power required to result in a given signal-to-noise ratio 
for the radar cross section σAV, then   exp /2),  

and  /2 ,                                   (4)                 

so that the probability of receiving the required power WR 
becomes      

 / √ .∞ /√            5)           

The average power received  is related to the average 
radar cross section by , since the radar is 
designed to return nominal power for a nominal radar cross 
section.  Also note that the integral in this equation is 
proportional to the complementary error function defined by          1 erf √ exp∞ ,           (6) 

so that the final result for the numerator of the SCNR 
expression for Swerling I targets is               √ .      (7)                      

In this equation the average radar cross section is implicit in 
the relation .  We can use Equation (7) to 
calculate the probability of detecting a radar signal from a 
fluctuating target in the presence of atmospheric turbulence 
of log standard deviation σW as a function of the ratio K of 
power transmitted to that required to detect this signal in the 
absence of target and atmospheric fluctuations for an 
average radar cross section.  Such a plot is shown in Figure 1 
for σW = 0.0, 0.2, 0.5 and 0.7, values ranging from light 
turbulence to heavy turbulence. 

We now consider Swerling III target fluctuations, 
characterized by                             2 / .               (8)                     

The probability that the radar cross section will be greater 
than some value σR required to give nominal performance is                           2 / .∞           (9)                       

978-1-4244-5813-4/10/$26.00 ©2010 IEEE 000883



 

Figure 1. Detection probability for a Swerling I target as a 
function of nominal energy required for detection in 
atmospheric turbulence characterized by different values of 
σW (SIGW). 

Integration gives 1 2 / .  Using σR = 

ER/C and σAV = KER/C, we get                            1 2/ .                 (10) 

This expression multiplies the erfc expression in (7) above.  
The final result for the numerator of the SCNR expression 
for the Swerling III case is then 

 1 2/ √ .        (11) 

                  Figure 2 shows a plot of the detection probability 
for a Swerling III target under the same conditions as those 
of Figure 1.  

 To obtain the actual probabilistic signal power 
level, we must multiply (7) and (11) by the nominal power 
received based on σAV and the nominal required power level 
WR.  Using the expression for the mean of the lognormal 
distribution given in (4), the nominal power is proportional 
to                                                                        .          (12) 

This expression must be multiplied by (7) or (11) to give the 
average signal power. 

 

Figure 2.  Detection probability for a Swerling III target 
under the same conditions as those specified for Figure 1. 

II. THEORY: DETERMINATION OF THE CLUTTER AND NOISE 
LEVELS FOR WEIBULL CLUTTER 

This portion of the theory combines zero-mean 
Gaussian receiver and background noise with Weibull 
clutter.  It follows closely the development of the 
combination of Gaussian noise and lognormally-distributed 
atmospheric turbulence given in [3] and uses an approach 
similar to that in the previous section.  In this section we 
develop an expression for the denominator of the signal to 
clutter and noise ratio for Weibull clutter.  The probability 
that a given threshold T will be exceeded in the presence of 
Gaussian noise of standard deviation σN and Weibull-
distributed clutter with shape parameter a and scale 
parameter b is  
√ · ,∞∞

   (13) 

where U is power.  The first integral is simply the 
complementary error function                                  √ ,                                (14)  

where we have used U0 as the nominal required power and 
multiplied it by the ratio K as we did earlier.  The closed-
form solution for the second integral is                                .                                     (15)             

In the expression (14), T/σN and U0/σN are the threshold- and 
signal-to-noise ratios chosen for some nominal performance 
as before.  The mean of the Weibull distribution is  
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                          Γ 1 1/ .                  (16)  

This expression states simply that the mean of the clutter 
return power is proportional to the transmitted power.  It 
accounts for the fact that more clutter power is returned if 
more power is transmitted. 

Solving for T/b, we get 
Γ / , and since TNR = 

T/σN, and SNR = U0/σN, we find 
                   , and ·Γ /· .           (17)  

             The final result for the probability that threshold 
will be exceeded in Weibull clutter and Gaussian noise is 
then 

Γ 1 1
 

                               · √ .                           (18)                         

To obtain the probabilistic SCNR for Weibull clutter, we 
calculate the ratio of the probabilities (7) or (11) to that of 
(18) and multiply by the ratio R of the signal power to clutter 
power in the presence of noise and target fluctuations, which 
is the ratio of the average signal power (12) to the average 
clutter and noise power σCSKU0 to get: 

      /2 ,         (19) 

 

Where we have made use of the fact that WR = U0. 

 

III. RESULTS AND DISCUSSION 

We have plotted the ratio of Equations (7) and (11) 
to (18) for Swerling I and Swerling II targets in Figures 3 
and 4.  For these plots, the log standard deviation of the 
atmospheric turbulence distribution was chosen to be 0.4, 
T/σN = 2 and U0/σN = 3, and the Weibull spread parameter a 
was varied from 1 to 4.   Figure 3 shows that there is no 
further increase in SCNR derived by transmitting more 
power beyond a value of approximately 10 times the 
nominal required to give nominal detection probability and 
false alarm rate.  Figure 4 shows the surprising result that the 
SCNR peaks at roughly three times nominal power for a 
Weibull shape parameter a of 1.0 and for a Swerling III 
target and decreases afterward.   A similar result was 
obtained in [8] for lognormal clutter.  We must keep in mind 
that these calculations are based on complex targets that 
fluctuate according to the Swerling phenomena in 

atmospheric turbulence, and would not hold for steady 
targets such as spheres or corner cubes.  In these cases, the 
signal would increase with power, resulting in an increase in 
SCNR.  For both Swerling I and Swerling III targets, all 
curves approach the quantity R in (19) as power is increased. 

 

Figure 3.  Probabilistic signal to clutter and noise ratio for 
nominal threshold to noise ratio (TNR) = 2.0, nominal signal 
to noise ratio (SNR) =3, σAV/σC = 1.0, and log standard 
deviation of atmospheric turbulence (SIGW) = 0.4 for 
various values of the Weibull clutter spread parameter a for 
a Swerling I target. 

 It is important to point out that these calculations do 
not consider the considerable gains that can be made by 
signal processing.  In this paper we consider only the signal, 
clutter, and noise levels. 

 
Figure 4. Probabilistic SCNR for a Swerling III target under 
the same conditions as those of Figure 3. 
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